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A small drop placed on a horizontal surface will spread under the action of capillary 
forces until it reaches an equilibrium position. The rate at which it spreads provides 
a means for testing certain hypotheses about moving contact lines; namely that there 
must be slip between the fluid and the solid boundary near the rim of the drop to avoid 
a force singularity there, and that the contact angle measured a t  the rim itself does 
not show the dynamic behaviour observed by measurements that ignore rapid changes 
in slope in the immediate vicinity of the rim but remains equal to its static value. 

By the use of matched asymptotic expansions, an equation for the rate of spread of 
a drop as a function of the radius of the contact circle is obtained. Experiments on the 
spreading of small drops of molten glass allow a comparison to be made between the 
spreading of a drop determined experimentally and that predicted theoretically, 
which supports the use of the proposed hypotheses as appropriate for the study of 
fluid motions containing moving contact lines. 

1. Introduction 
The object of this paper is to test certain proposals about the dynamics of fluid 

motions when the boundary contains a moving contact line by evaluating the rate of 
spread of a drop of fluid placed on a horizontal surface and comparing the predicted 
values with those determined experimentally. It is well-known that in such flows a 
force singularity appears if a solution of the Navier-Stokes equations with a no-slip 
boundary condition is attempted. The most usual hypothesis made to circumvent 
this difficulty is to relax the no-slip condition in the vicinity of the moving contact 
line and to replace it by a Maxwell condition in which the amount of slip is propor- 
tional to the local velocity gradient, the constant of proportionality being the slip 
coefficient. The magnitude of this coefficient is a measure of the extent of the region 
where slip is significant. There is no firm physical basis for this hypothesis, although 
Hocking (1976) argued that the flow over a rough surface could be modelled by a flow 
with slip over a smooth surface, the slip coefficient then being a measure of the scale 
of the roughness. For a smooth surface, there is no doubt that what is required is an 
analysis of the effects of molecular attraction near the contact line. Failing such an 
analysis, it seems plausible to postulate that its macroscopic effect would be the 
proposed slip boundary condition, with a slip coefficient of the molecular scale. 
Certainly this hypothesis is the simplest one that can be incorporated into a continuum 
model and that achieves the aim of removing the force singularity. 
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This slip hypothesis has been used to examine the motion of a meniscus (Hocking 
1977; Huh & Mason 1977; Lowndes 1980). The shape of the meniscus as calculated 
by Lowndes is in good agreement with experiment, but his solution does not provide 
a satisfactory test of the dynamics of the motion. The contribution to the total pressure 
gradient needed to drive the fluid from the neighbourhood of the contact line is only 
a small fraction of the total. A better model for experimental comparison is provided 
by the spreading of a drop, and it is this example of flow with a moving contact line 
which will be discussed here. 

In all problems that contain a moving contact line, it is necessary to make some 
statement about the contact angle. This is a complicated topic (for a review see Dussan 
V. 1979), and there is evidence tha t  the contact angle is velocity-dependent. But it 
has also been suggested that this evidence does not relate to the actual contact angle 
but to the slope measured a t  some distance from the contact line or derived from an 
assumed form of the free surface. Since, as we have already seen, there is a small 
region near the contact line where large stresses are present, it is reasonable to suppose 
that there will be large changes in slope in the same region, so the variation of contact 
angle with velocity may only reflect the presence of this region and the real contact 
angle may remain unaltered. Accordingly, it will be assumed here that the contact 
angle is a constant throughout the motion. (Since the drop spreads outwards, it is the 
advancing contact angle which must be used.) These two hypotheses, of a constant 
contact angle and of a slip boundary condition, have been used by Hocking (1981) 
to discuss the spreading of a thin drop using lubrication theory. Lowndes (1980) used 
these hypotheses in his numerical solution of the moving meniscus, and he was able 
to show how the rapid change of slope near the contact line led to derived contact 
angles in good agreement with those observed experimentally by a number of authors. 

Recently, the equation for the spreading of a thin drop has been re-examined, and 
a solution based on matched asymptotic expansions h&s been obtained (Hocking 
1 9 8 2 ~ ) .  The key point in the analysis is tha t  it is not enough to use simply an outer 
region covering the major part of the drop and an inner region of the same size as the 
slip coefficient; an intermediate region is needed as well, for which an expansion in 
terms of the logarithm of the slip coefficient is appropriate. Lacey (1982) independently 
recognized the importance of an expansion in terms of this variable in his study of the 
spreading of thin drops. Moreover - and this is the feature that makes the analysis of 
the present paper possible - these three regions are also present when the restrictions 
of lubrication theory are lifted. 

In this paper, we consider the spreading of a fluid drop placed on a horizontal 
surface when the drop is small enough for the spreading to be effected by capillarity, 
with gravity playing no part in the process. We obtain an equation for the rate of 
spread of the drop as a function of the contact radius, and hence are able to determine 
the radius as a function of the time from any given initial configuration. These results 
can then be compared with those obtained experimentally. 

The experiments that provide the data for this comparison were performed prior 
to the development of the theory presented in this paper and consist of observations 
of molten glass drops on a platinum plate (Copley, Rivers & Smith 1975). The contact 
between molten glass and certain metals has important technological significance. 
It is necessary to avoid the sticking of molten glass to metal forming tools, but a 
controlled degree of wetting is required in the drawing of glass fibres from a metal 
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bushing. A greater understanding of the wetting process would contribute to the 
control of interactions between metals and glasses, with particular applications to 
the development of glass-to-metal seals. 

A comparatively simple way of examining some features of this interaction in a 
controlled situation is in the spreading of a glass drop on a metal substrate. For this 
reason, and to obtain quantitative measurements of the shape and rate of spread of 
a drop, a number of experiments were made, which are described in this paper, and 
the results obtained are directly comparable with the theoretical ones. 

2. Formulation 
The parameters that govern the spreading of a liquid drop on a horizontal surface 

are the density p and the viscosity p of the liquid, the surface tension cr and the 
advancing static contact angle a, for the liquid/air/solid system, the gravitational 
acceleration g ,  the volume V of the drop and the slip coefficient A. We assume that 
these parameters have values that ensure that the following three assumptions are 
valid: the Reynolds number of the motion is small enough for the Stokes equations to 
be used; the Bond number, which measures the relative importance of gravity to  
capillarity in the spreading process, is small; the slip coefficient is small compared to 
the size of the drop. 

In  equilibrium, the surface of the drop is part of a sphere, and the equilibrium 
radius a, of the drop is given by 

nu: (1 + COB a,)a 
3 V - sin a,(2 + cos a,) a 

_ -  

We assume that the drop is placed on the horizontal surface with some initial shape 
and that the combined effect of surface tension and the fixed contact angle at the rim 
drives the drop towards the equilibrium position. We also assume that the drop is 
initially, and remains, symmetric about a vertical axis, so that, if we define cylindrical 
polar co-ordinates (r, g5, z) ,  all quantities are independent of q5, and we can introduce 
a stream function $. If u and v are the velocity components in the r- and z-directions 
respectively, and if ,up is the pressure, the Stokes equations can be written in the form 

(2.2) 

u = r-l$z, v = -r-l$,., pr = r-" 2, pz = -r-'C. (2.3) 

11- = 0, $z-A$zz = 0, (2.4) 

$rr - r-Vr + $m = 5, 5w - r-% + 522 = 0, 

and the velocity components and pressure are given by 

The boundary conditions on the plane z = 0 are 

since we are assuming a slip boundary condition with coefficient A. These conditions 
hold for 0 < r < a, where a(t) is the radius of the rim of the drop. On the axis r = 0, 
$ must be O(r3). The other boundary conditions must be applied at the surface of 
the drop which we define by S(r,  2, t )  = 0, with S(a, 0, t )  = 0 at the rim of the drop. 
The condition that this is a material surface is DS/Dt = 0 or 
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which, in integrated form, becomes 

L. M .  Hocking and A .  D .  Rivers 

Note that, if S E z - h(r, t ) ,  we have 

$ = -,fih,rdr, 

since h = 0 a t  r = a, and this is zero because the volume of the drop is constant. Hence 
we can write, as an alternative to (2.5), , 

The vanishing of the tangential stress on the drop surface is expressed by the condition 

(2.7) 

in which the derivatives of II. are to be evaluated on S = 0. The difference between the 
normal stress in the liquid a t  the drop surface and the pressure on the air outside is 
accounted for by the surface-tension contribution, which is proportional to the mean 
curvature. This condition has the form 

(Sf -8:) ($m - $v + r-'$r) + 2SzSr(2$rz -r-'$z) = 0, 

(r - K = p -pa + (Sf + Sf)-l{2(S; - Sf) r-l$rz + 2er-7hz 
1c 

- 2S,S5(r-1$zz - ~ - l $ , ~  + V-~II.,)}, (2.8) 
where pa is an unknown constant and 

K = (S~+S~)-~{S~S,.,.-2SzS,Srz+S~Szz+r-1S,(Sf+S~)}. 

If we denote the downward angle of slope at an arbitrary position on the drop surface 
by 6, so that 

the curvature K can be written more simply as 

K = - - (rs inS)  I d  along 8 = 0. 
r dr 

The condition at the rim z = 0, r = a is 

and the constant-volume condition is 
6 = a,, 

2n hrdr = V ,  1: (2.10) 

where S(r,  h, t) = 0. 
A key parameter in the motion of fluid interfaces is the capillary number Ca = pUu/u, 

which measures the relative importance of viscous to capillary forces. In meniscus 
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FIGURE 1. Schematic representation of the vicinity of the rim of the spreading drop. 

problems, the typical speed U can Ee controlled and it is possible to ensure that 
Ca < 1. It is then possible to expand the solution in powers of Ca, the leading term for 
the position of the interface being fixed before the corresponding stream function has 
to be evaluated. Consequently, the Stokes equations have to be solved in a previously 
determined domain. In  the present caae, however, the motion is driven by surface 
tension, and it looks at first sight that the capillary number will be O(l),  with the 
consequence that the Stokes equations and the equation determining the position of 
the surface would have to be solved simultaneously. However, the large stresses 
present at the contact line, even when the slip boundary condition is used, slow down 
the rate of spread of the drop so that Ca is proportional to E = l/lln At ,  which is small, 
and we can still validly expand in powers of this parameter.? 

The plan of the method of solution is as follows (see figure 1). In  the outer region, 
where r and z are O(l) ,  we first determine the leading term in the expansion of S 
from the constant-curvature condition. The stream function for this geometry can 
then be obtained, and the correction to the shape of the surface found. A similar 
process is performed in the inner region, where a - r and z are O(h).  These two regions 
are then matched together by means of an intermediate expansion. This expansion 
and matching procedure determines the speed a t  which the drop spreads, in principle 
to any order, and we obtain the first two terms in the expansion of the rate of spread 
in powers of B. 

3. The outer region 
We consider first the outer region where spatial variations are on the length scale 

of the drop aa a whole. Since the rate at  which the drop spreads is small, we start by 
solving the normal stress balance equation (2.8) with @ = 0, which gives the leading 
term in the expansion of the drop shape. If this is written aa 8, I z - ho(r, t )  = 0, we 
have 

h, = (a2 cosec2 a - rs)i - a cot a, 

since the surface tension ensures that the drop surface is part of a sphere. The radius 
of the rim of the drop is a(t) and the slope of the drop surface at the edge of the outer 

t A non-dimensional quantity should strictly be used in the definition of B, but the logarith- 
mic terms in the final result (5.8) do combine to form a non-dimensional expression. 
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region is a(t); these two quantities are related by the constant-volume condition (%lo), 
which gives 

(3.1) 

To this order, the pressure inside the drop is constant, and the pressure difference 
across the surface is fixed by (2.8). 

The next step is to determine @ in the region bounded by z = 0 and z = h,,. For this 
purpose it is convenient to introduce bispherical co-ordinates 6 and 7, defined by 

asin5 asinhq 

nu8 (1 + cos a)B -- 
3 v  - sina(2+cosa)' 

2 =  T =  coshV+cos[' (3.2) cosh r] + cos 6' 
The axis and the rim of the drop are defined by g = 0 and g = a0 respectively, the 
plane surface by 5 = 0, and the curved surface of the drop by 5 = a. The boundary 
conditions (2.4) satisfied by @ at 2 = 0 become 

@ = + & = O  at f = O .  (3.3) 

Since we are expanding in powers of E and will not reach terms which are O(h) in the 
expansion of @, we can ignore the slip term in this region. The boundary condition 
(2.6) fixes the value of @ on the free surface. With S = z - h,, the value of ah,/at can 
be calculated in terms of da/dt, since the constant-volume condition (3.1), when 
differentiated and simplified, shows that 

- act = --- 'a sin a(2 + cos a). 
dt a d t  

After some manipulation we obtain 

da coshq-1 
dt (cosh g + cos a)a' 

@ = aa- 

(3.4) 

(3.5) 

as the boundary condition which forces a non-zero solution for 4. The other condition 
to be applied at  the drop surface is the tangential stress condition (2.7), which in the 
new co-ordinates becomes 

@~~-@-,,+@-,coth'1-3(cosh'1++sa)-~(+~sina++-,sinhg) = 0. (3.6) 

These conditions are sufficient to determine the solution of the Stokes equations 
uniquely. The normal stress condition can then be used to find the correction to the 
drop shape. 

The Stokes equations in bispherical co-ordinates can be written in terms of the 
operator 

i+coah5cos'I a sin5 a -- aa as L E -+-- 
afs &-j* (cosh 5 + cos g) sinh 'I Q cosh + cos 'I z' 

and the equations (2.2) become 

as[ = (cosh 'I + cos 5)2L@, L[ = 0. 

The relations (2.3) between the pressure and the vorticity become 
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Following the suggestions of Payne & Pell (1960), who considered the solution of 
the Stokes equations in lenticular regions, we write 

z az-r2-zz $1 Sin  5+ $2 5 + = ;A+ 2a ”=  coshq+cos& ’ 
where q51 and $* are solutions of Lq5 = 0 which are regular at  q = 0. The corresponding 
value of b is 

Appropriate expressions for and q52 can be built up from solutions of the form 

(coshq+l=E)-*exp( +q5) @*(?I), 

where q is a separation parameter. The function Qq can be written in terms of the 
Legendre functions of complex order as 

With a suitable choice of q51 and q52 we can ensure that the conditions (3.3) a t  6 = 0 
are satisfied, and we write 

da 
$ = aZz (cosh q + cos C;)-t {A(q) sin 5sinhq5 

+ B(q) (COB 5sinh - qsin Scoshq5)) @,(q) dq. (3.10) 

In  order to satisfy the condition (3.5) a t  6 = u, it is necessary to express the function 
of q appearing in that condition in terms of Qq(q). This can be done by means of the 
result, quoted by Payne & Pell, 

(3.11) 

Manipulation of this equation and the application of the condition (3.5) eventually 
leads to an equation linking A(q) and B(q), namely 

A sin a sinh qu + B(cos a sinh qu - q sin u cosh qu) 

- - (sinucoshqu+2q(l+cosu)sinhqa). (3.12) 
2) cosh qn 

When the value (3.10) is substituted for $ in the tangential stress condition (2.7), and 
further manipulation of (3.11) is used, we obtain a second equation relating A@) and 
B(d, namely 

A(cos u msh qu + qsin usinh qu) - B( 1 + q’) sin u ~ ~ s h  qu 

3q( 1 + COB a)8 
(2qs( 1 + COB 01) sinh qu - cosh qa 

1 - - 
29 cosh qn sin 01 

sinhqu . (3.13) I (1 + cos (2 + cos a) 
sin201 

+ 
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These two equations, (3.12) and (3.13), determine A and B, and hence the stream 
function is known. 

The pressure to this order can be determined from the vorticity (3.9) and the rela- 
tions (3.8). The other terms making up the normal stress can also be found, and after 
considerable manipulation the normal stress equation (2.8) takes the form 

Z(q, r ] )  dq + const, 
aa 1 d 

,u(du/dt) r dr (3.14) 

where 
cosh r] + cos a 

sinh r] 
Z(q, r ] )  = 2(cosh 

qq(cosh r ] ,  + cos a )  cosh pa + Q sin a sinh qa 
sinh r],(cosh r ] ,  + cos a)f 

@)p(r]l) B(q) dr]l, (3.16) 

with 
C(q) = Asinacoshqa+ B(cosucoshqa-qsinasinhqu), 

D(q) = A sin a sinh qa + B(cos a sinh pa - q sin u cosh qa). 

If we write S = So +a,, where So is the angle of slope associated with So and 8, the 
correction forced by the motion, we can integrate (3.14) and obtain to first order 

/om '(" r]l)dqdr]l  
a (cosh r] + cos a)2 7 sinh r],( 1 + cos a cosh 7,) 

p(da/dt) " = sinh r] (  1 + cos a cosh r ] ) I o  (cosh r ] ,  + cos 
c1 sinh r ]  

i- 1 + cos a cosh 7' (3.16) 

since r sin a = asin So; c1 is a constant, as yet undetermined. 
If the drop surface is written as S E z - ho(r, t )  - hl(r, t )  = 0, 

dh 
-l= - 8, see2 So, 
dr 

and so 

since h,(a, t )  = 0. The constant c1 can be determined by the condition (2.10) that the 
volume of the drop is constant, so that 

/;h,rdr = 0.  

With the value of c1 so determined, the expression (3.16) for S, becomes 

pda (coshr]+cosa)2 7 sinh r],( 1 + cos a cosh 7,) 8 - _ -  
- a d t  sinhq(1 +cosacoshr]) [ so (coshr],+cosa)* 

(1  + cos a)2 shh2 r] rn sinh r] ,  

(cosh r] + cos a)2 s 0 (cosh r ] ,  + cos a)3 
- -  (3.17) 

We require the value of 13, near the rim, where r] = co. Using the value of Z given by 
(3.15), with A and B determined by the conditions (3.12) and (3.13), we can show that 
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6, is a linear function of 7 for large 7. Some of the components of the integrals in (3.17) 
can be evaluated exactly, and we obtain the following asymptotic result: 

( -~+ln{2(1+cosa)}+2)+J(a)  , (3.18) 1 6 ---[-+ pda sin2a 2s ina  
' - v a t  cosa a-sinacosa 

where 

- q(q2 + 1) cosh qaE,(q, a) 
cos a o sinh q(cosh 7 + cos a)* 

J(a)  = - 
q sin a cosh qa - cos a sinh qa 

(cosh 7 + cos a)2 
+fs ina  (3.19) 

4 sin a( 1 + cos a)2 q sinh qa cosh qa 
+ sin2 a cos a cosh2 qa - (1 + cos a)2 (2 + cos a) sinh2qa 

sin a(sinh qa cosh qa - q sin a cos a) E(q,a)  = 2 

Hence the angle of slope at the edge of the drop in this outer region is given by 

( 1  +cosa)e2 sin2a 
(Ina+ln( a ) ) + x a + J ( a ) ]  9 (3.20) 

8 -  a + t d a [  2sina 
adt a - sin a cos a 

where s is the arc length measured from the edge and is given by s - 2aexp ( -7) as 
s+ 0. 

4. The inner region 
The inner region extends to distances O(h) from the rim of the drop. We follow the 

same order of solution as in the outer region, and the first result is that the curvature 
of the interface is constant, so that to leading order 

So = z-(a-r)tana,, 

since we know that the contact angle at  the edge is a,. Using this result we can calculate 
the value of the stream function on the interface from (2.6), and this gives 

da 
at 9 = a-(a-r)tana, 

as one of the conditions that 9 must satisfy on So = 0. 
It is convenient to work in polar co-ordinates with origin at the rim, defined by 

r = a-hr,cosB, z = hr,sinO. 

Because the size of this region is so small, the curvature of the rim is unimportant and 
the solution is locally two-dimensional. The stream function and vorticity satisfy the 
appropriate forms of the equations (2.2), so that 

and the pressure-vorticity relations (2.3) become 

aP 1 as lap - as -- - - -- - - - - 
ar, r,ae' r,aO ar,' 
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The plane boundary of the drop is given by 8 = 0, and the conditions (2.4) to be 
applied there are 

since slip is important in this region. In  terms of the polar co-ordinates, the drop 
surface is given to leading order by 6 = a,, and the conditions to be satisfied there are 
(4.1) and the tangential stress condition (2.7), which reduce to 

a2$ da 
a02 at 

$ = -- = ha-r,sina, on 8 = a,. (4.4) 

If we write 
da 
at 

$ = ha-r,(sin$+f), 

the equation for f is identical with that solved previously for the problem of a plane 
meniscus (Hocking 1977). The solution was obtained there by writing rl = expp and 
using a two-sided Laplace transform, which reduced the problem to that of finding the 
solution of an integral equation for the value of a2f/dO2 on the boundary 0 = 0. With 
this quantity denoted by k,(p),  the integral equation was shown to be 

where the kernel L, was given by 

The asymptotic value of k, for large p was found to be 

2 sin2 a, 
a, - sin a, cos a, P +j(a,), kl - 

where j ,  which was denoted by h, in that paper, can only be found by a numerical 
solution of (4.5). 

The normal stress condition (2.8) in the co-ordinates currently being used becomes 

and the terms on the right-hand side can be expressed in terms of k,(p). After integra- 
tion, we obtain 

a,--- ' darn" F(p)  dp, 
a d t  - m  

where F has the Laplace transform 

1 2(w cos wa, sin a, -sin wa, cos a,) 
cos 2a, - cos 2wa, 

+ 
&, is the transform of k,, defined by 

m 

k , (o )  = / kl(p)  e-pwdp. 
- m  
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Making use of (4.6), we find the asymptotic value of the angle of slope as we leave the 
inner region to be 

(4.7) 
S 2 sin a, 

6 - a,+-- ln-+ ""( vat a, - sin 2sinas a, cos a, A a, - sin a, cos a, + Ej , 
where, as before, 8 is the arc length measured from the edge, and is equal to hr,. 

If this result is compared with the value found in the outer region as the rim is 
approached, it will be noted that both expressions contain a term in Ins, but that 
these terms do not match, and it is not legitimate to try to obtain an equation for 
da/dt by matching the constant parts of the two expressions. It is clear that the 
remedy is to introduce an intermediate region, across which the two asymptotic 
values of 6, (3.20) and (4.7), can be smoothly matched. 

5. The intermediate region 
To bridge the gap between the inner and outer regions, we start with the equations 

written in terms of the polar co-ordinates with origin at the rim used in the inner 
region and define a new variable x by 

r, = exp (+I, 

where the small parameter E is defined, as previously, by 

1 
E = -  

I W '  
We expand the solution in powers of E ,  and neglect terms O(8) throughout, as well 
of course atj all terms O(A) .  The surface of the drop is defined by 

0 = B(4 ,  

so that the angle of slope of the surface is given by 

to the chosen order, and we also have the result 

a6 
dx. 

$ = 6 - s -  

The slow variation of the boundary position with distance from the rim implies 
that  the solution is locally similar to that between plane boundaries, but with co- 
efficients which are slowly varying functions of r,. If we write the stream function as 

the equations (4.2) reduce to 
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with an error which is O($) and not O(s). The boundary conditions (4.3) and (4.4), 
neglecting the O(h) term, are 

g = - =  o on 8 =  0, 
88 

and the solution is 
sin p(8 cos (p - 8) - sin 8 cos p) 

- sin p cos p g =  

The pressure can now be determined, and the normal stress condition (2.8) then gives 
the equa,tion 

or, in view of (5.1), 
. d p  p da 2sinp 
dx 
_ -  --- 

m d t  $ - sin p cos p’ 
If we now define 

we can integrate (5.2) to obtain 
2,u da 
6 6  at a($) = -- x + const. (5.4) 

The constant can be determined by matching this solution to that in the inner region. 
If we write (4.7) in the current variables, we obtain 

2pda 1 ruda j(a,) 6 N a,+--- (x + 6 )  + - -- 
€6 dt G’(a,) a dtsina,’ 

since x = 6 In rl. It follows that 

and so (5.4) becomes 

The value of 6 as the rim of the drop is approached from the outer region is given by 
(3.20). From this result we obtain 

To match the corresponding function in the intermediate region with this result, we 
write x = 1 +clns in ( 5 4 ,  and obtain 
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Comparing these two values, (5.6) and (5.7), for G(p),  we see that the two terms in 
In 5 are identical, and the remaining parts agree, provided that 

G(a) - G(a,) = -- 2pau(-hh-ln(  t7 at 
l+cosa  a 

e ) - ( K a  sina a + )J(a) G(a) + ’ ( ~ ~ ~ ~ ) ) ,  

which is the equation for the rate of spread of the drop. Simplifying this expression, 
we have 

(5.8) -- 2p du = @(a) - G(a,) 
t7 dt -In h +In a - &,(a) + Qi(a,) ’ 

where 

&,(a) = 1 +In( 1 + cos a) + 
2sina 

a, - sin a, cos a, 
2 sina a, j(a,). &,(a,) = 

(5.9) 

(5.10) 

The leading term in the denominator of (5.8) could have been found from the leading 
t,erms in the inner and outer regions, which can be easily found without the effort 
needed to determine the functions &, and Qi. If a comparison with experimental 
results is to be attempted, however, it  is essential that these terms be included; 
otherwise any multiple of h could replace h with equal jusitfication. Since the deno- 
minator in (5.8) has an error O(E),  the given solution contains the first two terms in 
an expansion in powers of E .  

6. Numerical work 
There are three numerical tasks to be performed if the spreading of the drop is to 

be calculated. The functions &,, and Qi have to be evaluated for arbitrary angles, and 
the differential equation (5.8) must be solved. To evaluate &, we have to find the 
value of the infinite double integral J(a) ,  defined by (3.19), which itself requires the 
evaluation of the function @&). This function can be defined in terms of hyper- 
geometric functions, for which series solutions are available, but different series have 
to be used for different parts of the range of integration, and it proved simpler to 
evaluate it by direct solution of the differential equation it satisfies. Some care is 
needed to ensure that the infinite extent of the two variables in the integral is correctly 
accounted for. For most values of a there proved to be no difficulty in obtaining accu- 
rate values for the integral, but when a was close to n the convergence of the q-integral 
was slow and the solutions obtained were less accurate. The evaluation of Qi requires 
the solution of the integral equation (4.5). A few values were given in Hocking (1977), 
and the method of solution described there was extended to give a more detailed set 
of results. Some values of &, and Qi for angles in the range from zero to n are given 
in table 1. 

Before solving (5.8), it is convenient to express i t  in non-dimensional form. If we 
introduce a length scale a, equal to the radius of a sphere with the same volume as 
the drop, and define non-dimensional variables by 

i2 = u/ao, 7 = at/2,m0, 
(5.8) becomes 

di2 _ -  C(a) - G(a,) 
d~ - In (a,/A) + In a - &,(a) + Qi(a,) * 
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V 

a 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

Q. 
1.6852 
1.6614 
1.6223 
1.5687 
1.5017 
1.4226 
1.3326 
1.2334 
1.1263 
1.0127 
0.8938 
0.7705 
0.6437 
0.5140 
0.3816 

Qi 

- 3.3982 
- 2.7011 
- 2.2880 
- 1.9905 
- 1.7519 
- 1,5509 
- 1.3745 
- 1.2143 
- 1.0653 
- 0.9231 
- 0.7853 
- 0.6489 
- 0.51 16 
- 0.3710 
- 0.2246 

TABLE 1. 

a 
1-6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

Values of Q, and &, 

Q, 
0.2470 
0.1067 

- 0.0196 
-0.1560 
- 0.2896 
- 0.4247 
- 0.5529 
- 0.6737 
- 0.7841 
- 0.8807 
- 0.9604 
- 1.0209 
- 1.0629 
- 1.0810 
- 1.1370 

Q, 
- 0,0696 
0.0974 
0.2805 
0.4850 
0.7181 
0.9888 
1.3112 
1,7053 
2.2010 
2.8487 
3.7349 
5.0312 
7.0840 
10.6700 
21.6400 

1.5 

1 .o 

a 

0.5 

c 
I 1 

50 100 

T 

FIGURE 2. The outer contact angle aa a function of the time. The curves show the results 
calculated from (6.1). The number by each curve is the value of the index 'II where the slip 
coefficient A is equal to lo-" m. The symbols refer to the experimental results, and the key is 
given in table 2. 

The value of B for any value of a can be found from (3. l), which in the present variables 
becomes 

4( 1 + COB a)a 
sin a( 2 + cos a) ' 

&3 = 
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FIQUIZE 3. The later stages in the spreading. Note the changes .h the scale of both axes. The 
solid curves are for h = lo-* m and for static contact angles OaOb, 0.1, 0.16, 0.2 rad. The dashed 
curve is for h = 10-7 m and for a, = 0.06. 

and from (3.4) we also have 
1 d& _ -  - -sin a(2 + COB a)-- da 

d7 Bd7' 

The rate of spread of the drop when the rim has any radius or the contact angle in the 
outer region has any value can be found from (6.1). The time taken for the drop to 
spread from an initial position with a = a, is given by evaluating 

a da 
7 = 

It is therefore possible to find a as a function of 7 ,  starting from any initial position 
and with given values of the parameters a,, a, and A. 

For comparison with the experimental results described in $7, solutions for the 
spread of the drop were obtained for a, = 0.5 x 10-3 m, a, = 2.8, for a, = 0.05, 0.1, 
0.15, 0.2 and for h = lo-" m (n = 6,7,8,9). Some of the results obtained are shown 
in  figures 2 and 3. 

In  these calculations, and in the theory presented, it has been assumed that the 
initial configuration of the drop is consistent with the form taken in the outer region, 
that is it is part of a sphere. If the drop were started from any other shape, it would 
quickly distort into the spherical shape because of the dominance of surface tension 
in the outer region. Such initial transient behaviour is ignored here. It is not likely 
ever to be significant in the parameter range for which the theory is valid, and the 
experiments were conducted so that the initial shape was close to the required spherical 
form. 
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Temperature ("C) 5 10 20 

1010 5600 0 4000 2500 A 
1105 1500 1100 630 A 
1180 630 470 280 A 

TABLE 2. Viscosity in poise for each experiment. Also shown 
are the symbols used in figures 2 and 3. 

7. Experiments 
The experiments were undertaken to measure the time history of a small drop of 

molten glass on a horizontal surface. The substrate was a thin platinum sheet, ground 
and polished (on a lap wheel using a 123 pm diamond grit), and then degreased. The 
glasses used were ternary silicate glass containing SiO, and NaO, in a 4: 1 mole ratio, 
with additions of TiO, at the 5, 10 and 20 mole yo levels. Beads of an approximately 
spherical shape were made from these glasses, and the specimens used were chosen 
by weight to have a diameter close to 1 mm. The metal substrate was placed in a 
furnace with accurate temperature control and, after the temperature had equili- 
brated, the cold glass bead was placed on the heated platinum surface, whereupon it 
rapidly melted and began to spread. 

The change in shape of the vertical profile of the drop was recorded at measured 
times by photographs taken through a microscope. It was always possible to fit a 
circle to the drop profiles, and the apparent contact angle waa measured from the 
photographs. No variation in shape was observed when the platinum sheet and drop 
were inverted in the furnace. 

The experiments were performed at  three different temperatures, and the viscosity 
for each glass a t  each temperature was measured; the results are given in table 2. 
The surface tension was practically the same in all cases, and its value was 0.33 N m-l. 
The static contact angle was estimated from the shape of the drop after a very long 
time had elapsed. It proved difficult to obtain a very precise measurement, but in ell 
cases it was in the range 5' to 16'. 

The experiments performed in the inverted position show that gravity was not 
important in the spreading process, so that the experimental results should be com- 
parable with those of the theory. The spherical shape of the drop profile over most 
of its surface agrees with the leading term of the outer solution in the theory. The 
results of the experiments can be scaled in the same way as were the numerical ones, 
and they are shown as points on the diagrams in figures 2 and 3. There is some doubt 
about the time origin to be used, as there may be some spreading before the drop is 
completely molten. However, the theory shows that the initial spreading is very rapid, 
and the drop had usually spread to an approximately hemispherical shape before the 
first measurements were made, so that this initial uncertainty is of no importance. 

The results of figure 2 are not affected noticeably by a change in the static contact 
angle in the chosen range (0.05-0.2 rad). It can be seen that, though there is some 
scatter, the experimental results agree reasonably well with the theoretical curve 
for some value of the slip coefficient between 10-7 and 10-8 m. The values in figure 3 
relate to a later stage in the spreading process, as the drop approaches its equilibrium 
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shape. The static contact angle is now important, and the curves separate aa they 
asymptote to different values. Variation of the slip coefficient is now of less significance. 

Another set of experiments on the rate of spread of drops has been reported by 
Karnik (1977). In  our notation his results are for 7 < 500 and most of them are for 
static contact angles within the range we consider. The scale of the diagrams in Karnik’s 
paper is such that accurate results cannot be taken from them for inclusion in figures 
2 and 3, but our estimates for them do lie within the scatter of our results at the 
appropriate values of 7, thus providing further evidence for the acceptability of our 
model of the spreading phenomenon. 

8. Conclusions 
The agreement between the experimental results and the theoretical predictions is 

sufficiently good to strengthen the case for regarding the hypotheses put forward at 
the beginning of this paper as a satisfactory basis for the solution of problems involving 
moving contact lines. It is disappointing that it is not possible to determine the slip 
coefficient more accurately, especially as the most likely value lies midway between 
the values expected if surface roughness or molecular interaction are regarded as the 
primary cause of slip. 

The restriction that the Bond number is small enough to ensure that gravity is 
unimportant in the spreading process limits the application of the theory presented 
here to very small drops. There is no difficulty in principle preventing an extension 
of the theory to Bond numbers that are O( 1). The inner and intermediate regions are 
unchanged, but the outer region is no longer spherical to leading order, and has a 
shape determined by the static sessile-drop problem. If we then tried to find the stream 
function, we could no longer use any simple co-ordinate system but would have to 
resort to a numerical solution of the Stokes equations in the region between the plane 
and curved boundaries of the drop. If we are content to determine the gross features 
only, then, as pointed out before, we do not need to find the solution in this region, 
and to leading order we would have an equation like 

dEz G(a )  - @(a,) 
d7 ln(a,/h) ’ 
-- - 

but now the connection between Ez and a would be given, not by (6.2), but by the 
solution of the sessile-drop problem. For large Bond numbers the drop may be suffi- 
ciently flattened for lubrication theory to be applied in the outer region, although the 
full equations would still be needed in the other regions, where the slope of the drop 
would not be small. If, however, the slope is everywhere small, lubrication theory 
can be applied over the whole of the drop and the spreading problem in those circum- 
stances has been solved for all Bond numbers by Hocking (1982 b). 

The model for the spreading process used in this paper is probably the simplest 
possible one. There are many features present in the experimental situation which 
have not been included. As Copley, Rivers & Smith (1972) have shown, grain boun- 
daries impede the spreading, and droplets form by condensation of the vapour on 
the substrate ahead of the contact line; there are no doubt other microstructural 
features present which affect the spreading process. Our aim has been to concentrate 
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on the dynamics in the simplest case, to provide a basis to which these further refine- 
ments can be added. 

We wish to thank Mr A. S. Robinson, Director of Research and Development, and 
the Directors of Pilkington Brothers Ltd for their permission to publish the experi- 
mental work. We wish to thank a referee for the reference to the w e r  by Karnik. +. 
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